# Q1 Block Ciphers

Spring 2022

Weaver

# (0 points)

Consider the following block cipher mode of operation.

 $M_i$  is the *i*th plaintext block.  $C_i$  is the *i*th ciphertext block.  $E_K$  is AES encryption with key K.

 $C_0 = M_0 = IV$  $C_i = E_K(M_{i-1} \oplus M_i)$ 



Q1.1 Which of the following is true about this scheme? Select all that apply.

 $\Box$  (A) The encryption algorithm is parallelizable

 $\square$  (B) If one byte of a plaintext block  $M_i$  is changed, then the corresponding ciphertext block  $C_i$  will be different in exactly one byte

 $\square$  (C) If one byte of a plaintext block  $M_i$  is changed, then the next ciphertext block  $C_{i+1}$  will be different in exactly one byte

 $\Box$  (D) If two plaintext blocks are identical, then the corresponding ciphertext blocks are also identical

 $\hfill\square$  (E) The encryption algorithm requires padding the plaintext

 $\Box$  (F) None of the above

Q1.2 TRUE or FALSE: If the IV is always a block of all 0s for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.

| O(G) True | O (H) False | (I) —— | (J) | (K) | (L) |
|-----------|-------------|--------|-----|-----|-----|
|           |             |        |     |     |     |
|           |             |        |     |     |     |
|           |             |        |     |     |     |

Q1.3 TRUE or FALSE: If the IV is randomly generated for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.

| O (A) True | O (B) False | O (C) | (D) | (E) | (F) — |
|------------|-------------|-------|-----|-----|-------|
|            |             |       |     |     |       |
|            |             |       |     |     |       |

### Q2 IV-e got a question for ya

#### (0 points)

Determine whether each of the following schemes is IND-CPA secure. This question has 6 subparts.

Q2.1 AES-CBC where the IV for message M is chosen as HMAC-SHA256 $(k_2, M)$  truncated to the first 128 bits. The MAC key  $k_2$  is distinct from the encryption key  $k_1$ .

Provide a short justification for your answer on your answer sheet.

| O (A) Insecure | (C) | (E) |
|----------------|-----|-----|
| O (B) Secure   | (D) | (F) |
|                |     |     |

Q2.2 AES-CTR where the IV for message M is chosen as HMAC-SHA256 $(k_2, M)$  truncated to the first 128 bits. The MAC key  $k_2$  is distinct from the encryption key  $k_1$ .

Provide a short justification for your answer on your answer sheet.

Clarification made during the exam: You can assume that IV refers to the nonce for CTR mode.

| O(G) Insecure | (I) —— | (K) |
|---------------|--------|-----|
| O (H) Secure  | (J) —— | (L) |
|               |        |     |

Q2.3 AES-CBC where the IV for message M is chosen as SHA-256(x) truncated to the first 128 bits. x is a predictable counter starting at 0 and incremented *per message*.

| (A) Insecure | (C) — | (E) |
|--------------|-------|-----|
| O (B) Secure | (D)   | (F) |

Q2.4 AES-CTR where the IV for message M is chosen as SHA-256(x) truncated to the first 128 bits. x is a predictable counter starting at 0 and incremented *per message*.

*Clarification made during the exam*: You can assume that IV refers to the nonce for CTR mode.

| O (G) Insecure | (I) —— | <b>O</b> (K) —— |
|----------------|--------|-----------------|
| O (H) Secure   | (J)    | (L)             |

Q2.5 AES-CBC where the IV for message M is chosen as HMAC-SHA256 $(k_2 + x, M)$  truncated to the first 128 bits. The MAC key  $k_2$  is distinct from the encryption key  $k_1$  and x is a predictable counter starting at 0 and incremented *per message*.

| O (A) Insecure | (C) — | (E) |
|----------------|-------|-----|
| O (B) Secure   | (D)   | (F) |

Q2.6 AES-CTR where the IV for message M is chosen as HMAC-SHA256 $(k_2 + x, M)$  truncated to the first 128 bits. The MAC key  $k_2$  is distinct from the encryption key  $k_1$  and x is a predictable counter starting at 0 and incremented *per message*.

*Clarification made during the exam*: You can assume that IV refers to the nonce for CTR mode.

| O (G) Insecure | (I) —— | (K) |
|----------------|--------|-----|
| O (H) Secure   | (J) —  | (L) |

# Q3 Encryption and Authentication

(0 points)

Alice wants to send messages to Bob, but Mallory (a man-in-the-middle attacker) will read and tamper with data sent over the insecure channel.

- Alice and Bob share two secret keys  $K_1$  and  $K_2$
- $K_1$  and  $K_2$  have not been leaked (Alice and Bob are the only people who know the keys)
- Enc is an IND-CPA secure encryption scheme
- MAC is a secure (unforgeable) MAC scheme

For each cryptographic scheme, select all true statements.

Clarification during exam: For the answer choice "Bob can always recover the message M," assume that Mallory has not tampered with the message.

*Clarification during exam:* The answer choice "Bob can guarantee that M has not been changed by Mallory," this should say "Bob can guarantee that M has not been changed by Mallory without detection."

Q3.1  $\operatorname{Enc}(K_1, M), \operatorname{MAC}(K_2, M)$ 

 $\square$  (A) Bob can guarantee M is from Alice

 $\square$  (B) Bob can guarantee that M has not been changed by Mallory

 $\Box$  (C) Mallory cannot read M

 $\Box$  (D) Bob can always recover the message M

 $\Box$  (E) None of the above

 $\Box$  (F) —

Q3.2  $Enc(K_1, M), MAC(K_2, Enc(K_1, M))$ 

 $\square$  (G) Bob can guarantee M is from Alice

 $\Box$  (H) Bob can guarantee that M has not been changed by Mallory

 $\Box$  (I) Mallory cannot read M

 $\Box$  (J) Bob can always recover the message M

 $\Box$  (K) None of the above

(L) -----

Q3.3  $Hash(M), MAC(K_1, M)$ 

 $\square$  (A) Bob can guarantee M is from Alice

 $\hfill\square$  (B) Bob can guarantee that M has not been changed by Mallory

 $\square$  (C) Mallory cannot read M

 $\Box$  (D) Bob can always recover the message M

 $\Box$  (E) None of the above

 $\Box$  (F) —

Q3.4 To simplify their schemes, Alice and Bob decide to set  $K_1 = K_2$ . (In other words,  $K_1$  and  $K_2$  are the same key.) Does this affect the security of their cryptographic schemes?

O (G) Yes, because they should always use a different key for every algorithm

O (H) Yes, because they should always use a different key for every message

(I) No, because the encryption and MAC schemes are secure.

O(J) No, because the keys cannot be brute-forced.

(K) -----

(L) -----