Q1

Block Ciphers

Consider the following block cipher mode of operation.

\[C_0 = M_0 = IV \]
\[C_i = E_K(M_{i-1} \oplus M_i) \]

\[M_i \] is the \(i \)th plaintext block. \(C_i \) is the \(i \)th ciphertext block. \(E_K \) is AES encryption with key \(K \).

Q1.1 Which of the following is true about this scheme? Select all that apply.

- (A) The encryption algorithm is parallelizable
- (B) If one byte of a plaintext block \(M_i \) is changed, then the corresponding ciphertext block \(C_i \) will be different in exactly one byte
- (C) If one byte of a plaintext block \(M_i \) is changed, then the next ciphertext block \(C_{i+1} \) will be different in exactly one byte
- (D) If two plaintext blocks are identical, then the corresponding ciphertext blocks are also identical
- (E) The encryption algorithm requires padding the plaintext
- (F) None of the above
Q1.2 True or False: If the IV is always a block of all 0s for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.

☐ (G) True ☐ (H) False ☐ (I) — ☐ (J) — ☐ (K) — ☐ (L) —

Q1.3 True or False: If the IV is randomly generated for every encryption, this scheme is IND-CPA secure. Briefly justify your answer.

☐ (A) True ☐ (B) False ☐ (C) — ☐ (D) — ☐ (E) — ☐ (F) —
Q2

IV-e got a question for ya

Determine whether each of the following schemes is IND-CPA secure. This question has 6 subparts.

Q2.1 AES-CBC where the IV for message M is chosen as HMAC-SHA256(k_2, M) truncated to the first 128 bits. The MAC key k_2 is distinct from the encryption key k_1.

Provide a short justification for your answer on your answer sheet.

☐ (A) Insecure ☐ (C) ☐ (E)

☐ (B) Secure ☐ (D) ☐ (F)

Q2.2 AES-CTR where the IV for message M is chosen as HMAC-SHA256(k_2, M) truncated to the first 128 bits. The MAC key k_2 is distinct from the encryption key k_1.

Provide a short justification for your answer on your answer sheet.

Clarification made during the exam: You can assume that IV refers to the nonce for CTR mode.

☐ (G) Insecure ☐ (I) ☐ (K)

☐ (H) Secure ☐ (J) ☐ (L)

Q2.3 AES-CBC where the IV for message M is chosen as SHA-256(x) truncated to the first 128 bits. x is a predictable counter starting at 0 and incremented per message.

☐ (A) Insecure ☐ (C) ☐ (E)

☐ (B) Secure ☐ (D) ☐ (F)

Q2.4 AES-CTR where the IV for message M is chosen as SHA-256(x) truncated to the first 128 bits. x is a predictable counter starting at 0 and incremented per message.

Clarification made during the exam: You can assume that IV refers to the nonce for CTR mode.

☐ (G) Insecure ☐ (I) ☐ (K)

☐ (H) Secure ☐ (J) ☐ (L)
Q2.5 AES-CBC where the IV for message M is chosen as HMAC-SHA256($k_2 + x, M$) truncated to the first 128 bits. The MAC key k_2 is distinct from the encryption key k_1 and x is a predictable counter starting at 0 and incremented per message.

○ (A) Insecure ○ (C) — ○ (E) —
○ (B) Secure ○ (D) — ○ (F) —

Q2.6 AES-CTR where the IV for message M is chosen as HMAC-SHA256($k_2 + x, M$) truncated to the first 128 bits. The MAC key k_2 is distinct from the encryption key k_1 and x is a predictable counter starting at 0 and incremented per message.

Clarification made during the exam: You can assume that IV refers to the nonce for CTR mode.

○ (G) Insecure ○ (I) — ○ (K) —
○ (H) Secure ○ (J) — ○ (L) —
Alice wants to send messages to Bob, but Mallory (a man-in-the-middle attacker) will read and tamper with data sent over the insecure channel.

- Alice and Bob share two secret keys K_1 and K_2
- K_1 and K_2 have not been leaked (Alice and Bob are the only people who know the keys)
- Enc is an IND-CPA secure encryption scheme
- MAC is a secure (unforgeable) MAC scheme

For each cryptographic scheme, select all true statements.

Clarification during exam: For the answer choice “Bob can always recover the message M,” assume that Mallory has not tampered with the message.

Clarification during exam: The answer choice “Bob can guarantee that M has not been changed by Mallory,” this should say "Bob can guarantee that M has not been changed by Mallory without detection."

Q3.1 $\text{Enc}(K_1, M), \text{MAC}(K_2, M)$

- (A) Bob can guarantee M is from Alice
- (B) Bob can guarantee that M has not been changed by Mallory
- (C) Mallory cannot read M
- (D) Bob can always recover the message M
- (E) None of the above
- (F) ——

Q3.2 $\text{Enc}(K_1, M), \text{MAC}(K_2, \text{Enc}(K_1, M))$

- (G) Bob can guarantee M is from Alice
- (H) Bob can guarantee that M has not been changed by Mallory
- (I) Mallory cannot read M
- (J) Bob can always recover the message M
- (K) None of the above
- (L) ——
Q3.3 Hash(M), MAC(K₁, M)

- (A) Bob can guarantee M is from Alice
- (B) Bob can guarantee that M has not been changed by Mallory
- (C) Mallory cannot read M
- (D) Bob can always recover the message M
- (E) None of the above

(F) ——

Q3.4 To simplify their schemes, Alice and Bob decide to set K₁ = K₂. (In other words, K₁ and K₂ are the same key.) Does this affect the security of their cryptographic schemes?

- (G) Yes, because they should always use a different key for every algorithm
- (H) Yes, because they should always use a different key for every message
- (I) No, because the encryption and MAC schemes are secure.
- (J) No, because the keys cannot be brute-forced.

(K) ——

(L) ——