
Weaver
Spring 2022

CS 161
Computer Security Discussion 2

Question 1 Hacked EvanBot ()
Hacked EvanBot is running code to violate students’ privacy, and it’s up to you to disable it before it’s
too late!

1 # include < s t d i o . h>
2
3 void spy_on_s tuden t s (void) {
4 char b u f f e r [1 6] ;
5 f r e a d (bu f f e r , 1 , 2 4 , s t d i n) ;
6 }
7
8 in t main () {
9 spy_on_s tuden t s () ;
10 return 0 ;
11 }

The shutdown code for Hacked EvanBot is located at address 0xdeadbeef, but there’s just one problem—
Bot has learned a new memory safety defense. Before returning from a function, it will check that its
saved return address (rip) is not 0xdeadbeef, and throw an error if the rip is 0xdeadbeef.

Clarification during exam: Assume little-endian x86 for all questions.

Assume all x86 instructions are 8 bytes long. Assume all compiler optimizations and buffer overflow
defenses are disabled.

The address of buffer is 0xbffff110.

Q1.1 (3 points) In the next 3 subparts, you’ll supply a malicious input to the fread call at line 5 that
causes the program to execute instructions at 0xdeadbeef, without overwriting the rip with the
value 0xdeadbeef.

The first part of your input should be a single assembly instruction. What is the instruction? x86
pseudocode or a brief description of what the instruction should do (5 words max) is fine.

Q1.2 (3 points) The second part of your input should be some garbage bytes. How many garbage bytes
do you need to write?

(G) 0 (H) 4 (I) 8 (J) 12 (K) 16 (L)

Q1.3 (3 points) What are the last 4 bytes of your input? Write your answer in Project 1 Python syntax,
e.g. \x12\x34\x56\x78.

Q1.4 (3 points) When does your exploit start executing instructions at 0xdeadbeef?

(G) Immediately when the program starts

(H) When the main function returns

(I) When the spy_on_students function returns

(J) When the fread function returns

(K)

(L)

Page 2

Question 2 C Memory Defenses ()
Mark the following statements as True or False and justify your solution. Please feel free to discuss
with students around you.

1. Stack canaries completely prevent a buffer overflow from overwriting the return instruction
pointer.

2. A format-string vulnerability can allow an attacker to overwrite values below the stack pointer

3. An attacker exploits a buffer overflow to redirect program execution to their input. This attack no
longer works if the data execution prevention/executable space protection/NX bit is set.

4. If you have a non-executable stack and heap, buffer overflows are no longer exploitable.

5. If you use a memory-safe language, some buffer overflow attacks are still possible.

6. ASLR, stack canaries, and NX bits all combined are insufficient to prevent exploitation of all buffer
overflow attacks.

Short answer!

1. What vulnerability would arise if the canary was above the return address?

2. What vulnerability would arise if the stack canary was between the return address and the saved
frame pointer?

3. Assume ASLR is enabled. What vulnerability would arise if the instruction
jmp *esp exists in memory?

Page 3

Question 3 Pointer Authentication Codes (PACs) ()
Suppose we are on a 64-bit system, and we have an address space of 250 bytes.

For each of the following questions, provide a short answer and justify your response. Please feel free
to discuss with students around you.

1. How many unused bits are available for pointer authentication in each address?

Regardless of your answer to the previous part, for the remainder of the questions, assume that 10 bits
are used for pointer authentication in each address and the attacker does not have the ability to create
their own pointer authentication codes (PACs).

2. Assume that 64-bit stack canaries are enabled and that the first two bytes of the stack canary are
always null. How many bits does the attacker have to guess correctly to guess the stack canary
and the PAC?

Now assume that the attacker has a format string vulnerability that lets them read any part of memory
while the program is running.

3. How many bits does the attacker have to guess correctly to guess the stack canary and the PAC?

4. Suppose the attacker is interacting with a remote system. Provide at least one defense that would
make brute-force attacks infeasible for the attacker.

Page 4

