
Weaver
Spring 2022

CS 161
Computer Security Discussion 1

For a handy guide on x86 and GDB, check out this GDB Cheatsheet.

Question 1 Stack Diagram Practice ()
Consider the following function.

1 void swap (in t ∗ num1 , in t ∗ num2 , in t a r r _ l o c a l []) {
2 in t temp = ∗num1 ;
3 ∗num1 = ∗num2 ;
4 a r r _ l o c a l [0] = ∗num1 ;
5 ∗num2 = temp ;
6 a r r _ l o c a l [1] = ∗num2 ;
7 }
8
9 in t main (void) {
10 in t x = 6 1 ;
11 in t y = 1 ;
12 in t a r r [2] ;
13 swap (&x , &y , a r r) ;
14 }

1. Complete the diagram of the stack if the code were executed until a breakpoint set on line 3.
Assume normal (non-malicious) program execution. You do not need to write the values on the
stack, only the names. There are no extraneous boxes, and each box represents 4 bytes in memory.
The bottom of the page represents the lower addresses.

main's sfp

x

y

arr

arr

int* arr_local

int* num2

int* num1

swap's rip

swap's sfp

temp

2. Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if the code
were executed until a breakpoint set on line 3.

https://fa21.cs161.org/assets/projects/1/cheatsheet.pdf

Page 2

Question 2 Software Vulnerabilities ()
For the following code, assume an attacker can control the value of basket, n, and owner_name passed
into search_basket.

This code contains several security vulnerabilities. Circle three such vulnerabilities in the code and
briefly explain each of the three on the next page.

1 s t ruc t c a t {
2 char name [6 4] ;
3 char owner [6 4] ;
4 in t age ;
5 } ;
6
7 / ∗ S e a r c h e s t h r ough a BASKET o f c a t s o f l e n g t h N (N sh ou l d be l e s s

than 3 2) . Adop t s a l l c a t s w i th age l e s s than 12 (k i t t e n s) .
Adopted k i t t e n s have t h e i r owner name o v e r w r i t t e n wi th OWNER_NAME
. R e t u r n s t h e number o f k i t t e n s adop t e d . ∗ /

8 s i z e _ t s e a r c h _ b a s k e t (s t ruc t c a t ∗ baske t , in t n , char ∗ owner_name) {
9 s t ruc t c a t k i t t e n s [3 2] ;
10 s i z e _ t num_ki t t ens = 0 ;
11 i f (n > 3 2) return −1 ;
12 for (s i z e _ t i = 0 ; i <= n ; i ++) {
13 i f (b a s k e t [i] . age < 1 2) {
14 / ∗ R e a s s i g n t h e owner name . ∗ /
15 s t r c p y (b a s k e t [i] . owner , owner_name) ;
16 / ∗ Copy t h e k i t t e n from th e b a s k e t . ∗ /
17 k i t t e n s [num_ki t t ens] = ba sk e t [i] ;
18 num_ki t t ens ++ ;
19 / ∗ P r i n t h e l p f u l mes sage . ∗ /
20 p r i n t f (" Adopt ing k i t t e n : ") ;
21 p r i n t f (b a s k e t [i] . name) ;
22 p r i n t f (" \ n ") ;
23 }
24 }
25 / ∗ Adopt k i t t e n s . ∗ /
26 a d o p t _ k i t t e n s (k i t t e n s , num_ki t t ens) ; / / Imp l emen t a t i o n no t shown

.
27 return num_ki t t ens ;
28 }

Page 3

1. Explanation:

Solution: Line 12 has a fencepost error: the conditional test should be i < n rather than
i <= n. The test at line 11 assures that n doesn’t exceed 32, but if it’s equal to 32, and if all
of the cats in basket are kittens, then the assignment at line 17 will write past the end of
kittens, representing a buffer overflow vulnerability.

2. Explanation:

Solution: At line 12, we are checking if i <= n. i is an unsigned int and n is a signed int, so
during the comparison n is cast to an unsigned int. We can pass in a value such as n = -1
and this would be cast to 0xffffffff which allows the for loop to keep going and write past the
buffer.

3. Explanation:

Solution: On line 15 there is a call to strcpy which writes the contents of owner_name,
which is controlled by the attacker, into the owner instance variable of the cat struct. There
are no checks that the length of the destination buffer is greater than or equal to the source
buffer owner_name and therefore the buffer can be overflown.

Solution: Another possible solution is that on line 21 there is a printf call which prints the value
stored in the name instance variable of the cat struct. This input is controlled by the attacker and is
therefore subject to format string vulnerabilities since the attacker could assign the cats names
with string formats in them.

Some more minor issues concern the name strings in basket possibly not being correctly termi-
nated with ‘\0’ characters, which could lead to reading of memory outside of basket at line 21.

Describe how an attacker could exploit these vulnerabilities to obtain a shell:

Solution: Each vulnerability could lead to code execution. An attacker could also use the fencepost
or the bound-checking error to overwrite the RIP and execute arbitrary code.

Page 4

Question 3 Remus ()
This problem is Question 1 of Project 1 converted to a discussion question, with the intention of providing a
foundation for completing Project 1. The question will also consist of a live GDB walkthrough, conducted
by your TA. A video version of this walkthrough is available on https://cs161.org/.

Consider the following vulnerable code.

1 # include < s t d i o . h>
2
3 void o r b i t ()
4 {
5 char buf [8] ;
6 g e t s (buf) ;
7 }
8
9 in t main ()
10 {
11 o r b i t () ;
12 return 0 ;
13 }

1. Which line of code contains the memory safety vulnerability? Briefly explain this vulnerability.

Solution: Line 6 contains buffer overflow vulnerability with gets(). There are no checks
that the stdin input to gets() is less than or equal to the length of buf, or 8 bytes. Thus, an
attacker can use gets() to perform a buffer overflow attack, overwriting the RIP to point to
an attacker’s shellcode.

2. Complete the stack diagram if the code were executed until a breakpoint set on line 6. Assume
normal (non-malicious) program execution. You do not need to write the values on the stack,
only the names. There are no extraneous boxes, and each box represents 4 bytes in memory. The
bottom of the page represents the lower addresses.

orbit's RIP

orbit's SFP

compiler padding

compiler padding

buf

buf

3. Construct an input to buf that would result in a successful buffer overflow attack. Assume that
orbit’s RIP is stored at 0xfffff8e0 and that you have a SHELLCODE script that you would like to
execute. In addition, assume that there are 8 bytes of compiler padding.

Page 5

Solution: 'A' * 20 + '\xe4\xf8\xff\xff' + SHELLCODE

With this input, we overwrite orbit’s RIP to point to the SHELLCODE stored above the RIP.

Page 6

