
Weaver
Spring 2022

CS 161
Computer Security Discussion 1

For a handy guide on x86 and GDB, check out this GDB Cheatsheet.

Question 1 Stack Diagram Practice ()
Consider the following function.

1 void swap (in t ∗ num1 , in t ∗ num2 , in t a r r _ l o c a l []) {
2 in t temp = ∗num1 ;
3 ∗ num1 = ∗num2 ;
4 a r r _ l o c a l [0] = ∗ num1 ;
5 ∗ num2 = temp ;
6 a r r _ l o c a l [1] = ∗ num2 ;
7 }
8
9 in t main (void) {
10 in t x = 6 1 ;
11 in t y = 1 ;
12 in t a r r [2] ;
13 swap (&x , &y , a r r) ;
14 }

1. Complete the diagram of the stack if the code were executed until a breakpoint set on line 3.
Assume normal (non-malicious) program execution. You do not need to write the values on the
stack, only the names. There are no extraneous boxes, and each box represents 4 bytes in memory.
The bottom of the page represents the lower addresses.

main's sfp

swap's rip

2. Now, draw arrows on the stack diagram denoting where the ESP and EBP would point if the code
were executed until a breakpoint set on line 3.

https://fa21.cs161.org/assets/projects/1/cheatsheet.pdf

Page 2

Question 2 Software Vulnerabilities ()
For the following code, assume an attacker can control the value of basket, n, and owner_name passed
into search_basket.

This code contains several security vulnerabilities. Circle three such vulnerabilities in the code and
briefly explain each of the three on the next page.

1 s t ruc t c a t {
2 char name [6 4] ;
3 char owner [6 4] ;
4 in t age ;
5 } ;
6
7 / ∗ S e a r c h e s t h r ough a BASKET o f c a t s o f l e n g t h N (N sh ou l d be l e s s

than 3 2) . Adop t s a l l c a t s w i th age l e s s than 12 (k i t t e n s) .
Adopted k i t t e n s have t h e i r owner name o v e r w r i t t e n wi th OWNER_NAME
. R e t u r n s t h e number o f k i t t e n s adop t e d . ∗ /

8 s i z e _ t s e a r c h _ b a s k e t (s t ruc t c a t ∗ baske t , in t n , char ∗ owner_name) {
9 s t ruc t c a t k i t t e n s [3 2] ;
10 s i z e _ t num_ki t t ens = 0 ;
11 i f (n > 3 2) return −1;
12 for (s i z e _ t i = 0 ; i <= n ; i ++) {
13 i f (b a s k e t [i] . age < 1 2) {
14 / ∗ R e a s s i g n t h e owner name . ∗ /
15 s t r c p y (b a s k e t [i] . owner , owner_name) ;
16 / ∗ Copy t h e k i t t e n from th e b a s k e t . ∗ /
17 k i t t e n s [num_ki t t ens] = ba sk e t [i] ;
18 num_ki t t ens ++ ;
19 / ∗ P r i n t h e l p f u l mes sage . ∗ /
20 p r i n t f (" Adopt ing k i t t e n : ") ;
21 p r i n t f (b a s k e t [i] . name) ;
22 p r i n t f (" \ n ") ;
23 }
24 }
25 / ∗ Adopt k i t t e n s . ∗ /
26 a d o p t _ k i t t e n s (k i t t e n s , num_ki t t ens) ; / / Imp l emen t a t i o n no t shown

.
27 return num_ki t t ens ;
28 }

Page 3

1. Explanation:

2. Explanation:

3. Explanation:

Describe how an attacker could exploit these vulnerabilities to obtain a shell:

Page 4

Question 3 Remus ()
This problem is Question 1 of Project 1 converted to a discussion question, with the intention of providing a
foundation for completing Project 1. The question will also consist of a live GDB walkthrough, conducted
by your TA. A video version of this walkthrough is available on https://cs161.org/.

Consider the following vulnerable code.

1 # include < s t d i o . h>
2
3 void o r b i t ()
4 {
5 char buf [8] ;
6 g e t s (buf) ;
7 }
8
9 in t main ()
10 {
11 o r b i t () ;
12 return 0 ;
13 }

1. Which line of code contains the memory safety vulnerability? Briefly explain this vulnerability.

2. Complete the stack diagram if the code were executed until a breakpoint set on line 6. Assume
normal (non-malicious) program execution. You do not need to write the values on the stack,
only the names. There are no extraneous boxes, and each box represents 4 bytes in memory. The
bottom of the page represents the lower addresses.

orbit's RIP

3. Construct an input to buf that would result in a successful buffer overflow attack. Assume that
orbit’s RIP is stored at 0xfffff8e0 and that you have a SHELLCODE script that you would like to
execute. In addition, assume that there are 8 bytes of compiler padding.

Page 5

